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1. Introduction

This report is the Final Technical Report for contract number F49620-92-C-0005 from the
Air Force Office of Scientific Research to Northwest Research Associates, Inc. The research area
is laboratory studies of gravity wave, mean flow interactions. The period of performance covered
by this report is 15 November 1991 to 14 November 1994.

The next section, Section 2, contains a review of gravity wave, mean flow interactions,
with an emphasis on previous laboratory experiments. In Section 3, we discuss our experimental
facility; in Section 4 we present our results. A summary and comments are in Section 5. A re-
print from Applied Mechanics Review is included in the Appendix.

2. Background

Atmospheric gravity waves have a large range of length and time scales. They are impor-
tant in atmospheric circulation for transporting momentum and for generating turbulence, thereby
producing mixing. One mechanism for the breakdown of gravity waves into turbulence and mix-
ing occurs as a wave approaches its critical level, where the mean flow equals the horizontal phase
speed of the wave (Booker and Bretherton, 1967).

It is important to understand how gravity waves propagate and dissipate in the atmosphere
to be able to predict atmospheric circulation. The interactions and couplings between large-scale
and small-scale atmospheric phenomena are not well understood, and this lack of understanding
explains, in part, our inability to predict atmospheric conditions globally or locally very far in ad-
vance. For example, studies have shown that terrain has a significant effect on the variance in the
troposphere and the stratosphere (Nastrom et al, 1987) and that breaking gravity waves (such as
might occur in gravity wave, critical layer interactions) are important in the large-scale flow in the
troposphere and lower stratosphere. Hence, local topography generates mesoscale gravity waves,
and these waves are important globally as well as locally.

Linear theory for the interaction of a gravity wave with a critical layer was first developed
by Bretherton (1966) and Booker and Bretherton (1967). Subsequent theoretical and numerical
research has been performed by Benney and Bergeron (1969), Maslowe (1973, 1977), Grimshaw
(1975), Fritts (1978, 1979, 1982), Brown and Stewartson (1980), Dunkerton (1980, 1981, 1982),
Lindzen (1981), Dunkerton and Fritts (1984), Dunkerton and Robins (1992), and many others.
For reviews, see Fritts (1984), Maslowe (1986), and Andrews et al (1987).

Observationally, it has been difficult to locate and observe gravity wave, critical layer in-
teractions in the atmosphere. To help understand this phenomenon, several gravity wave, critical
layer experiments have been performed under controlled, laboratory conditions. Using mono-
chromatic waves, laboratory experiments have been reported by Thorpe (1973, 1981), Koop
(1981), and Koop and McGee (1986). In these experiments, the gravity waves were generated by
a corrugated bottom floor. The interaction of a broadband gravity wave source with shear was
also reported in Bretherton et al (1967) and, cited above, Koop (1981) and Koop and McGee
(1986). In these experiments, a triangular-shaped obstacle or a cylinder generated the broadband
wave signal. In all these laboratory experiments:




(a) the results were primarily qualitative and were presented as flow visualization results or
as point sensor temporal plots,

(b) due to limitations of the experimental facilities, only short-time (several minutes or less)
gravity wave, critical layer interactions could be studied, and

(c) the horizontal wavelengths of the forced gravity waves were small, generally less than
15-25 cm, and, hence, viscosity may have been important in the overturning regions,
where typical length scales are a fraction of the horizontal wavelength of the incoming
wave.

Our previously reported laboratory study of gravity wave, critical layer interactions with
monochromatic waves (Delisi and Dunkerton, 1989) differed from the above studies in three
ways:

(a) we were the first to report quantitative measurements of the mean flow modifications due

to the interactions,

(b) long-time interactions were reported, with observed interaction times of over an hour,
and

(c) the forced gravity waves had a horizontal wavelength of 240 cm, an order of magnitude
larger than previous studies.

In this study, we will expand on the results reported in Delisi and Dunkerton (1989) by
further examining single wave forcing and by examining gravity wave, critical layer interactions
using two monochromatic waves for the wave forcing. Reduced funding prevented examination
of gravity wave, critical layer interactions using a compact, broadband wave source, as originally
proposed.

3. Review of the Experimental Facility

The experimental facility consists of an annular wave tank, computers to run the experi-
ment and to acquire the probe measurements, power supplies and motor drivers to drive the forc-
ing wave, and flow measurement and visualization equipment. To perform an experiment, the
tank was filled with salt-stratified water, a lid was rotated on the water surface to generate a
shear, and gravity waves were generated on the bottom floor of the tank by moving the floor ver-
tically up and down. The gravity waves generated at the floor propagated up into the tank,
reached a critical level where the current speed equaled the phase speed of the wave, and inter-
acted with the mean flow. The interaction was measured with probes and observed with flow
visualization.

The tank consists of two concentric acrylic walls, 1.8 and 1.2 m in diameter, and 40 cm
high (Figure 1). The acrylic is attached to, and supported by, circular aluminum frames. The
frames extend below the acrylic walls to support the floor actuation equipment. The floor mem-
brane is made out of resilient, rubberized material used in scuba diving wetsuits. Under the
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membrane are 32 pie-shaped pieces of acrylic, joined end to end to form a continuous ring. At
the junction between each floor piece is a tee-shaped aluminum piston. The top of the tee runs
along and supports the junction between adjacent pie-pieces, and the vertical portion extends
downward. At the bottom of the tee is a ballnut. A ballshaft threads into the ballnut, and extends
down to and through a flange bearing. By turning the ballshaft, the ballnut, the tee, and the asso-
ciated section of the floor move up and down.

The ballshaft is coupled to a stepper motor via a drive belt. Each stepper motor has a
stepper motor driver that receives its signals from a computer. The motors are powered by two
3-phase, 3000-watt DC power supplies. For fast response, the motors are driven through resis-
tors that are 10 times the internal resistance of the motors.

The tank has a "lid" that is an acrylic ring of the same nominal dimension as the floor of
the tank. In shape it is flat like a large "O," but it is trimmed for a loose fit into the tank. The in-
ner and outer perimeters have 5 cm high walls, so the lid can float on the water in the tank. The
outer wall has a groove for a long rubber drive cord. Four brass spindles are located around the
perimeter of the main tank, one being powered. The drive cord is passed around the lid, and
pulled away from the lid to go outside the spindles. This centers the lid in the tank. The powered
spindle makes the lid rotate; this rotation generates the shear flow.

Neutrally buoyant particles are placed in the flow prior to the tank being filled. The parti-
cles are made of SGF Pliolite, a styrene-butadiene polymer. The particles are illuminated in a thin,
vertical sheet near the tank center line during an experiment. Time exposures of the particles by a
35-mm camera on the side of the tank yield streak photographs of the particle motions. These
steak photographs yield vertical profiles of instantaneous particle velocity. The average of these
vertical profiles over one wave period yields the mean velocity (Delisi and Dunkerton, 1989).

The particles are also used to obtain two-dimensional velocity field measurements using
Digital Particle Imaging Velocimetry (DPIV; Willert and Gharib, 1991). The DPIV system con-
sists of a Spectra-Physics 5-watt Argon laser, a shutter and timer, and processing software. DPIV
measurements were made to correlate shadowgraph measurements with velocity data in overturn-
ing regions and to estimate vorticity over a complete wave cycle. These results are presented in
Section 4.

A Seabird Electronics Model SBE-7 microstructure conductivity probe extends into the
tank from the side, making a right angle near the tank center line. The probe shaft on the outside
of the tank is fastened to an arm. Moving the arm causes the probe shaft to rotate, moving the
probe tip up and down in the tank. The arm is driven by a crank and pushrod connected to a vari-
able speed gearmotor. The gearmotor also drives a position encoder that generates 512 square
waves and one index pulse for each cycle of the conductivity probe. These square waves and in-
dex pulses are stored by the data acquisition computer and are used in later analysis to determine
density vs. probe depth.




4. Results
4.1 General results

To perform an experiment, we filled the tank with a stratified salt water solution, rotated
the lid at the water surface to create a shear profile, then propagated one or two waves on the
bottom floor of the tank by moving the floor vertically with the stepper motors. Measurements
consisted of instantaneous density data from the oscillating conductivity probe, bottom floor po-
sition data, particle streak photographs (used to obtain mean and instantaneous velocity profiles),
35-mm and video pictures of shadowgraph flow visualization, and, in some instances, DPIV data.
Table 1 gives the relevant information for the runs discussed in this report.

Table 1. Relevant data for the runs discussed in this report. All waves had wavenumber = 2.

Peak-to-Peak Peak-to-Peak
Niop Nbottom Phase Speed  Amplitude Phase Speed Amplitude

Run (sec™) (sec™) (cm/sec) (cm) (cm/sec) (cm)

38 1.56 0.92 3.5 4.0 - -

111 1.54 0.99 4.5 4.0 - -

141 1.57 1.00 4.5 3.0 3.5 3.0

151 1.62 1.02 4.5 3.0 3.5 3.0

161 1.65 1.03 4.5 4.0 - -

171 1.61 1.02 4.5 4.0 3.5 1.0

191 1.58 1.03 4.5 4.0 35 2.0

211 1.44 0.85 4.5 4.0 - -
221 1.44 0.85 4.5 4.0 - -

We used two, linearly stratified density layers in these experiments. Data from 3 runs are
shown in Figure 2. In these runs, the density profile was nominally identical, with a highly strati-
fied region at the top of the tank and a lighter stratification in the bottom of the tank. In Figure 2,
the data are shown by the symbols, and the straight lines are shown for comparison to linearity.
The average Brunt-Vaisala frequency, N, for the top layer is 1.63 sec™ where
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shown for comparison to linearity.
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l

where g is the acceleration due to gravity, p is mean density, p is density, and z is the vertical
coordinate. The value of N in the upper layer was chosen to minimize the depth of the mixed
layer generated by the rotation of the lid. Because the mixed layer growth is inhibited by a
stronger stratification, the value of N in the upper layer was made as large as practically possible.
The value of N in the lower layer is chosen from considerations of the dissipation scale height, d,
given by

d~"73 2)

where k is the zonal wavenumber, & =c - U, ¢ is the phase speed of the forced wave at the
bottom floor, U is the mean flow speed, and v is the kinematic viscosity (Plumb and McEwan,
1978). To minimize gravity wave dissipation and to maximize the wave energy reaching a given
vertical level, we want d to be as large as possible. For this reason, we use a weaker stratifica-
tion, hence, a lower value of N, at the bottom of the tank than at the top of the tank. In Figure 2,
the average value of N in the lower part of the tank is 1.02 sec”. Figure 2 also shows that the
stratifications are nearly linear in both the top and the bottom of the tank and that the values of N
from run to run are reproducible to within a few percent.

The rotating lid was used to generate the mean shear in the tank. The lid was started from
rest and brought to full speed in 60 minutes. For these experiments, full speed of the lid was 1
revolution in approximately 31 sec. Figure 3 shows the evolution of the velocity profile. The
times given are in minutes before the start of the experiment (the start of the experiment is at
T =0). For this run, T = - 45 minutes is the time the lid reached full speed. Figure 3 shows that
the velocity profile reached near-equilibrium at a time of T = - 15 minutes, which was 30 minutes
after the lid reached full speed.

The typical depth of the critical layer was around 11 cm below the surface for a wave with
a phase speed of 4.5 cm/sec. The typical depth of the critical layer for a wave with a 3.5 cm/sec
phase speed was around 1-2 cm deeper.

In all experiments, the results can be separated into two parts. In the early part of an ex-
periment (t < ~ 13 minutes), the turbulence was due to overturning Kelvin-Helmholtz billows.
For later times, the turbulence was due to the internal mixing regions discussed in Delisi and
Dunkerton (1989 and 1994).

Figure 4 shows a series of shadowgraph visualizations for Run 171 from times of 9 min-
utes 18 seconds after the start of the bottom floor (9:18) to 9 minutes 25 seconds after the start of
the bottom floor (9:25). These visualizations are enhanced digital images of the video of the
shadowgraph. The sequence displayed in Figure 4 shows the growth and decay of a series of
Kelvin-Helmholtz (K-H) billows. Each picture in this sequence shows a side view of the tank. A
clock is shown in the center of the bottom of each picture. The digital clock shows the time in
minutes and seconds after the start of the bottom floor; the analog clock shows time of day. Ver-
tical scales are shown on the left and right edges; the scales are in inches below the water surface.
A bottom floor indicator is shown in the bottom half of the right-hand edge. This indicator is a
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A series of enhanced video images from Run 171 showing the growth and decay of
a series of Kelvin-Helmholtz billows. Times after the start of the experiment are
(a) 9 minutes and 18 seconds (9:18), (b) 9:19, (c) 9:20, (d) 9:21, (e) 9:22, (f) 9:23,
(g) 9:24, and (h) 9:25. In each image: a clock is shown at the bottom, scales (in
inches) are shown on both the left and right hand edges, a bottom floor indicator is
shown at the bottom right, the oscillating conductivity probe is shown extending
into the image from the upper right corner, the bottom of the mixed region is
shown at the top, and the reflection from the shadowgraph lamp is shown as the
vertical spot to the right of the center of the image.
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vertically moving lever that is attached to the bottom floor in the center of the images. The white
triangle just below the number “12” on the right-hand edge moves vertically with the floor. The
white vertical strip on the tank wall shows the position of the floor. The horizontal, black lines on
this strip mark the maximum (top) and minimum (bottom) positions of the floor. In Figure 4a, at
9:18, the floor is just below the non-deflected position. With each succeeding image, as time pro-
gresses, the indicator moves towards the trough of the wave. In the last image, at 9:25, the indi-
cator is at the minimum position of the floor, i.e., at the trough of the wave. The oscillating con-
ductivity probe is shown as the long, straight rod extending from the upper right corner of the im-
age to near the center of the flow. The conductivity sensor is located at the end of this rod. The
conductivity sensor moves vertically upwards with each succeeding photograph. The bottom of
the mixed region is shown as the horizontal white and dark lines at a depth of around 3'/; inches
below the surface. The shadowgraph lamp is reflected at the outer side wall of the tank and is the
vertical white spot just to the right of the center in each image. Note that shadows from the bot-
tom floor indicator and the conductivity probe are shown on the back wall of the tank.

In Figure 4, the region of interest is the flow at depths from 7 to 8 inches below the sur-
face. In Figure 4a, this region shows a series of three waves at the depth of the conductivity sen-
sor. As time progresses, these waves propagate to the right, and grow in amplitude into a series
of overturning billows (Figures 4c and 4d at 9:20 and 9:21, respectively). The billows then col-
lapse and finally decay (Figure 4h at 9:25). These waves look remarkably like Kelvin-Helmholtz
billows which have been studied and documented in previous laboratory studies (Thorpe, 1968;
Delisi and Corcos, 1973). We will show in the next section that quantitative measurements are
consistent with this interpretation.

In some instances, we observed the K-H billows grow, then collapse and decay, and then
grow again. An example of this is given in Figure 5 (from Run 141). This figure shows three en-
hanced video images similar to those in Figure 4. In Figure 5a, at a time of 5:43, the K-H billows
have grown in amplitude and are starting to overturn. In Figure 5b, at 5:54, the waves have de-
cayed, and the amplitudes are much smaller than in Figure 5a. In Figure 5c, at 6:04, the waves
have grown again and are again overturning. This example is one in which waves grow, decay,
and grow again. Although this phenomenon of growth, decay, and subsequent growth has been
speculated on before, this is the first example in a laboratory experiment we have seen of its oc-
currence.

In Figure 6, we show more measurements of early K-H overturning. Figure 6a shows a
shadowgraph image of overturning billows early in Run 151. Figure 6b shows the density profile
at the same time from the oscillating conductivity probe. Also shown in Figure 6b, for compari-
son, is the initial density profile taken just before the start of the bottom floor. This figure shows
that the overturning, at a depth of around 17 cm, occurs at the base of a region of weak density
gradient. This result is consistent with our earlier findings and argues against convective over-
turning. We will return to this topic in Section 4.2 in our discussion of Figure 10.

At later times (t > ~ 13 - 16 minutes), the flow in the tank is characterized by one or more
internal mixing regions (Delisi and Dunkerton, 1989 and 1994). These regions are characterized
by lens-shaped masses of fluid which propagate around the tank at the speed of the bottom wave
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Three enhanced video images from Run 141 showing the growth (Figure a),
collapse and decay (b), and re-growth (c) of K-H billows.
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Figure 6. (a) An enhanced video image from Run 151 showing a series of K-H billows and

(b) a simultaneous density profile from the oscillating conductivity probe through
the same region.
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in the single-wave case or at the speed of the composite wave in the two-wave case. More will be
said about these regions in Section 4.3.

4.2 One-wave results

- The results in this section will concentrate on those runs in which we used a single wave
on the bottom floor.

Several runs were performed using a single, forcing wave on the bottom floor (see Ta-
ble 1). Examples of the floor position for two of these runs are shown in Figure 7. In Figure 7a
for Run 111, the floor was started at time = 0 with the full amplitude of 2 cm (4 cm peak-to-
peak). This is termed a “hard start” of the floor. In Run 161, we performed a run identical to
Run 111 only with a “soft start” of the bottom floor. In a soft start, the amplitude of the wave at
the floor is initially zero and increases linearly with time until, at the end of 8 cycles, the amplitude
of the bottom wave is 100 percent. The position of the bottom floor for Run 161 is shown in
Figure 7b. We performed a “soft start” in this run because we believed there may be adverse side
effects to starting the floor at the full amplitude. One such side effect was thought to be secon-
dary harmonics. We will show in Figure 8 that these side effects appear to be negligible. Note
that the final amplitude of the bottom floor in both Run 111 and 161 is 2 cm (4 cm peak-to-peak).

Videotapes of shadowgraph visualization clearly show the regions of overturning and tur-
bulence as a function of time (cf., Figures 4, 5, and 6). We have analyzed these videotapes to
determine the vertical extent of the breaking regions as a function of time for each run. Figure 8a
shows the observed regions of turbulence vs. time after the start of the bottom floor for Run 111,
and Figure 8b shows the same information for Run 161. Both of these figures show the follow-
ing, similar features:

a. The initial regions of turbulence, fromt =0 to t ~ 13 — 16 minutes, first appear near
the top of the tank and progress downwards, toward the bottom floor, as time in-
creases.

b. Fort >~ 13 - 16 minutes, most of the observed turbulence occurs in mixing regions
in the bottom third of the tank, with only sporadic, patchy turbulence being observed
in the top half of the tank.

c. The major effect of the “soft start” in Run 161 is to delay the appearance of the first
regions of turbulence. In Run 111, the first turbulence appears at t ~ 2 minutes. In
Run 161, the first turbulence appears at t ~ S minutes. This delay was expected since
the amplitude of the forcing wave, hence, the wave energy, takes longer to reach the
steady-state value in Run 161. Note that the observed regions of turbulence for these
two runs overlay each other nicely if one run is shifted 3 minutes relative to the other.
This result implies that the "hard start” and "soft start"” results are nearly identical ex-
cept for a small shift in time.
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Instantaneous velocity profiles obtained from streak photographs were averaged over one
wave cycle to estimate the mean velocity profile. Figure 9 shows the evolution of the mean ve-
locity profile with time from Run 38, which is similar to Run 111 (figure from Delisi and
Dunkerton, 1989). This figure shows that a ledge appears in the mean flow at t = 5 minutes,
around the time of K-H overturning. By t = 10 minutes, this ledge has progressed downwards
toward the floor of the tank, consistent with the activity plot in Figure 8a. Att =20 and 75 min-
utes, the mean velocity profile is nearly constant with depth. During this time, the flow is domi-
nated by the mixing regions in the lower part of the tank.

We have examined the instantaneous velocity and density profiles for Run 38 to estimate
the Richardson number evolution in the early flow. The Richardson number is defined as

oz

where N is the Brunt-Vaisala frequency (eqn. 1) and a%z is the vertical shear. A region is line-
arly unstable if Ri < .25 (Miles, 1961; Delisi and Corcos, 1973).

Figure 10a (from Delisi, 1988) shows data from Run 38 from 4:25 to 7:55. The vertical
lines in the figure are located at crests of the bottom wave. Constant density surfaces are shown
from 10 to 25 cm depth, with the base of the mixed region at a depth of around 10 cm. Three
regions of wavebreaking from the videos are shown as the shaded regions. In this figure, the
breaking begins approximately 15 cm below the lid, near the trough of the bottom wave, and pro-
gresses lower in the tank during each wave cycle, similar to the data shown in Figure 8. The
breaking occurs at the base of the weak gradient region in each cycle and just above regions of
stronger density gradient. Several instantaneous velocity profiles, from streak photographs, are
also shown in this figure. In each profile, the maximum instantaneous velocity shears are located
vertically in the regions of wavebreaking. Below the critical level (which occurs at a depth of 11 -
12 cm), the maximum particle velocities are located above the regions of wavebreaking and are in
the regions of weaker density gradient. Convective overturning will occur when the instantaneous
particle speeds exceed the wave phase speed (Orlanski and Bryan, 1969). Hence, convective
overturning will occur at vertical locations where the instantaneous particle speeds are a maxi-
mum, whereas here the overturning is observed below the locations where the particle speeds are
a maximum. These results imply a K-H instability rather than a convective instability.

In Figure 10b, we plot the Richardson number for this data. To compute the Richardson
number, we used the density contours in Figure 10a to compute a local N, and we used the streak

photographs to compute I %z . Figure 10b shows that the Richardson number is low in the re-
gions where we observe wavebreaking in Figure 10a. This wavebreaking occurs in regions of low
N and high shear.
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Figure 9. Evolution of the mean velocity profile with time in a one-wave experiment. Times
are in minutes after the start of the bottom floor. (From Delisi and Dunkerton,
1989)
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(a) Contours of constant density surfaces, regions of wavebreaking, and several
instantaneous velocity profiles (Run 38 from 4:25 to 7:55). The vertical lines
locate the crests of the bottom wave. (b) Richardson number estimates for the
data in Figure 10a. The darkest area signifies Ri<1l. Contour intervals are one unit
apart.
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Note that, from Fig. 3, at the depth of the critical level for the 4.5 cm/sec wave,

aa_(z] ~0.93sec™t 4)

and the mean flow Richardson number is 1.2. This is the minimum Richardson number in the flow
(at or below the critical layer), since the vertical shear gets weaker with increasing depth. At the
depth of the observed overturning in Fig. 4, for example, (z ~ 16.5 cm) the mean flow Richardson
number is over 8. Thus, the mean flow Richardson number is above one at the critical layer and
increases rapidly with depth. The mean flow, then, is stable to Kelvin-Helmholtz instability. It is
the wave shear, when added to the mean shear, which reduces the Richardson number below one-
quarter, thereby generating overturning and turbulence. This is seen most clearly in Figure 10.
Here, at a depth of 20 c¢m, the mean flow Richardson number is ~20. With the bottom wave
forcing, however, the local Richardson number in the overturning region is ~ 0.05 (using the in-
stantaneous velocity profiles shown in Figure 10). Thus the wave shear added to the mean shear
reduced the local Richardson number below one-quarter.

To explore this phenomenon in more detail, we performed DPIV studies, as discussed in
Section 3. Figure 11 shows a comparison of instantaneous velocity profiles from DPIV measure-
ments and from tracking of individual particles taken before the start of Run 221. Two DPIV
profiles are shown, made with different processing windows. The profile with the larger window
shows a smoother profile and is more representative of how the particle tracking was performed.
The profiles from both methods agree well to within a fraction of one cm/sec. This comparison
shows that DPIV agrees well with individual particle tracking, which is similar to using particle
streak photographs to determine instantaneous velocity profiles.

In Run 211, we co-located both the shadowgraph visualization system and the DPIV sys-
tem. During selected times during this run, we turned off the shadowgraph and used DPIV to
obtain data nearly simultaneously with the shadowgraph. Figure 12 shows a 35-mm photograph
of early K-H overturning. Also shown is a vorticity plot using DPIV taken 1.8 seconds after the
photograph. The DPIV imaging area matches the box outlined in black in the photograph. Be-
cause of difficulties obtaining a uniform particle distribution with depth, particle images could
only be processed in a region 10.0 < z < 16.0 cm, where z = 0 corresponds to the bottom edge of
the box, which is a depth of 30.5 cm below the surface.

The K-H billows in the photograph are moving to the right at a speed of around 4 cm/sec.
Because of the 1.8-second gap between the photograph and the vorticity plot, the rolling billow to
the right of center in the viewing window in the photograph has moved to the far right in the vor-
ticity plot. The billow just to the left of the center in the viewing window in the photograph has
moved just to the right of center in the vorticity plot, and the vorticity concentration to the left of
center in the vorticity plot is associated with a new billow, which is seen just to the left of the
window in the photograph.

A shadowgraph visualization is an integration through the entire tank, from the outer side
wall of the tank, where the light enters, to the inner side wall of the tank, where we observe the
visualization. DPIV, on the other hand, measured the velocities on the centerline of the tank.
The purpose of taking near-simultaneous shadowgraph and DPIV measurements, as in Figure 12,
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Figure 11. Comparison of instantaneous velocity profiles from DPIV measurements and from

tracking of individual particles taken before the start of Run 221.
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Figure 12.
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Photograph of shadowgraph visualization of K-H billows in RBun 211 and a
vorticity plot of the windowed area in the photograph using DPIV measurements
taken 1.8 seconds after the photograph.
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was to convince ourselves that the DPIV measurements were observing similar phenomena as we
observed with the shadowgraph. This appears to be the case, since, from the DPIV measure-
ments, we observed concentrations of vorticity in appropriate places, as visualized with the shad-
owgraph. This implies that the K-H billows were located in the center of the tank and were not
simply a tank-wall phenomenon.

In Run 221, we obtained DPIV measurements at 4-second intervals over several cycles of
the bottom wave. By linking together data from these consecutive images, we can study the
gravity wave, critical layer interactions over a complete wave cycle. Figure 13a shows a compos-
ite view of vorticity over 1.5 wave cycles using 22 such images at an early time in the K-H over-
turning (8:05 - 9:29). Again, z = 0 corresponds to a depth of 30.5 cm below the surface. This
composite was obtained by joining individual images edge to edge so that the central 18 cm were
used from each image (corresponding to the distance the 4.5 cm/sec bottom wave travels in 4
seconds). This composite of images taken at a fixed location at many times may be thought of as
an instantaneous image in the tank at one instant in time. A wave crest passed by the measure-
ment station in the tank at times corresponding to x = 15 and x =255 cm in the figure.

Figure 13b shows the evolution of the instantaneous horizontal velocity profiles measured
in the center of each DPIV image used to compose Figure 13a. In this figure, z represents verti-
cal position, as in Figure 13a, and the x-coordinate is a velocity scale representing 2 cm/sec be-
tween tick marks.

During Run 221, we also videotaped the particle field illuminated by the DPIV laser sheet.
As in Figure 8, we observed this video and measured the depths and times of wavebreaking and
rolling motions. These depths and times for Run 221 are shown in Figure 13c.

Figure 13 shows that the region containing vorticity descends with time at an angle of
~2.9°, The area containing the significant vorticity corresponds to the ledge of maximum veloc-
ity shear (Figure 13b) which also descends with time. As the velocity ledge descends, the maxi-
mum shear increases, until it is a maximum near 155 cm. Shortly after this, wavebreaking is ob-
served (Figure 13c). The ledge in the velocity profile then relaxes, and the profile becomes nearly
constant. At the start of the next cycle, a new velocity ledge forms, and the process repeats itself.

Figure 14 shows similar data to Figure 13 for motions 35 minutes after the start of the
bottom wave. The data shown here are for one cycle from 35:09 to 36:05. During this time, a
wave crest is at x = 133 cm. Here, the region containing negative vorticity descends at a slightly
steeper angle of ~ 3.5°. A velocity ledge begins to form around x = 80 cm, but it is weaker and
more vertically diffuse than in Figure 13. The most notable feature in the flow is the appearance
of a jet of fluid moving at the phase speed of the bottom wave. The jet appears at x ~ 131 cm,
and is nearly coincident with the crest of the bottom wave. This feature is most visible at
z =7.5 cm in the ninth (from the left) velocity profile in Figure 14b and as the left-most tip of the
observed wavebreaking region in Figure 14c. Strong negative vorticity is observed along the
lower edge of this jet, and wavebreaking continues along this lower edge well after the jet has
passed.
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(a) Composite view of vorticity from DPIV images over 1.5 wave cycles at an
early time in the K-H overturning (8:05 to 9:29) in Run 221. (b) Evolution of the
instantaneous horizontal velocity profiles measured in the center of each DPIV
image used in (a). (c) Observed regions of turbulence in Run 221 at the times

shown in Figures 13a and 13b.
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Figure 15 shows the individual velocity profiles in Figures 13b (one cycle only) and 14b
overplotted with a dark line representing the average velocity profile over the wave cycle. In both
cases, the deviations from the mean during one wave period are significant, indicating that the
gravity wave has significantly perturbed the mean flow. Also, note that in each wave cycle, the
maximum velocity is nearly equal to the phase velocity of the bottom wave (4.5 cm/sec).

4.3 Two-wave results

Several two-wave experiments were performed in addition to the one-wave experiments
described above (cf., Table 1). Because the waves had different phase speeds, the waves had dif-
ferent critical levels. Both waves always propagated in the same direction on the bottom floor.

In the first case to be discussed, Run 171, we used one wave with a phase speed of 4.5
cm/sec and a peak-to-peak amplitude of 4.0 cm and a second wave with a phase speed of 3.5
cm/sec and a peak-to-peak amplitude of 1.0 cm. (With these two waves, the bottom forcing has a
beat period of 4 minutes.) Thus, this case is identical to the one-wave case (Runs 111 and 161)
except for the addition of the small-amplitude second wave.

The floor position vs. time and the observed regions of turbulence for Run 171 are shown
in Figures 16 and 17, respectively. (This run was terminated prematurely at 38:40 due to me-
chanical problems with the bottom-wave generators.) Figure 16 shows that the addition of the
second wave causes a significant perturbation on the motion of the bottom floor relative to the
one-wave case (Figure 7b). In both the one-wave case and this two-wave case, the initial K-H
overturning is similar.

At t >~ 16 min, the shadowgraph visualization for this run (Figure 17) shows a significant
difference from the one-wave case (Figure 8b). In the one-wave case, the internal mixing regions
which occur near the bottom of the tank appear once every wave cycle. Only small, sporadic re-
gions of turbulence appear above these regions, at depths around 15 cm. In the two-wave case,
around t ~ 16 min, the trbulent regions appear to bifurcate, with K-H overturning appearing at a
depth around 17 cm and mixing regions, similar to those in the one-wave case, appearing at lower
depths.

Although the time-averaged amplitude over one beat period is slightly higher in this two-
wave run (1.30 cm peak-to-peak) vs. the one-wave run (1.28 cm/sec for Run 161), the observed
regions of turbulence in the later flow are slightly more irregular in the two-wave case (cf., Figure
8b vs. Figure 17). This irregularity can be traced to the smaller floor motion at these times. Note,
for example, the weaker flow signal in the bottom of the tank in Figure 17 at times 22:30, 26:30,
30:00, and 35:00. Referring to Figure 16, these are all times at which the bottom floor had a
minimum excursion from the neutral floor position. Thus, the occurrence of the bottom mixing
region appears to be connected to the local amplitude of the bottom wave forcing.

Run 191 is identical to Run 171 except we increased the amplitude of the second wave
(again with a phase speed of 3.5 cm/sec) to a peak-to-peak amplitude of 2.0 cm. The floor posi-
tion vs. time and the observed regions of turbulence for this run are shown in Figures 18 and 19,
respectively.
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vertical profiles, 35:09 - 36:01, 1 cycle

vertical profiles, 8:05 - 8:57, 1 cycle
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Instantaneous DPIV velocity profiles and the average (dark line) for (a) early wavebreaking from 8:05 to 8:57 and (b) late

mixing region formation from 35:09 to 36:01 in Run 221.
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Figure 18 shows, as expected, that the maximum and minimum floor excursions are larger
and smaller, respectively, than the excursions for Run 171. The time-averaged amplitude over
one beat period is 1.37 cm. Relative to the observed regions of turbulence for the previous run
(Figure 17), the observed regions of turbulence for this run (Figure 19) show fewer mixing re-
gions in the bottom of the tank at late times. Those mixing regions present are grouped into a
series of two or three followed by a period of time where there is no activity. For example, Fig-
ure 19 shows internal mixing regions in the bottom of the tank at times of 41, 45, and 49 minutes,
while there is no activity at 43 and 47 minutes. Looking at Figure 18 shows that the bottom floor
has maximum excursions at 41, 45, and 49 minutes, corresponding to the times regions of turbu-
lence are observed in the tank. The floor has minimum excursions at 43 and 47 minutes, corre-
sponding to times no activity is observed.

The observed correlation of the bottom floor and the observed regions of activity is more
noticeable in Run 191 than in Run 171 because of the larger differences between the maximum
and minimum floor excursions. Thus, when the bottom floor excursions are large, a large amount
of wave energy is transferred to the flow, and this energy results in mixing regions. When the
floor excursions are small, a smaller amount of energy is transferred to the flow, and the flow re-
mains stable.

Run 151 offers additional insight into this phenomenon. In this run, we used one wave
with a phase speed of 4.5 cm/sec and a peak-to-peak amplitude of 3.0 cm and a second wave with
a phase speed of 3.5 cm/sec and a peak-to-peak amplitude of 3.0 cm. Thus, both waves in this
run have the same amplitude, but they have different phase speeds. The maximum wave ampli-
tude for this run is identical to the maximum wave amplitude for Run 191.

The floor position vs. time and the observed regions of turbulence for Run 151 are shown
in Figures 20 and 21, respectively. Figure 20 shows early K-H breaking and regular groupings of
turbulence at later times. These groupings consist of two or three internal mixing regions in the
bottom of the tank (two at early times and three at later times) and turbulence in the upper part of
the tank at the same time. In between these grouping, there is no observed turbulence in the tank.
These observations are consistent with what we observed in the other two-wave runs, and is con-
sistent with the movement of the bottom floor (Figure 20).

Note in Figure 21 that the early wavebreaking (which appears to be K-H from the videos)
takes on a slightly different form than we observed before (compare Figure 21 with the one-wave
case of Run 161 shown in Figure 8b). In Figure 8b, the K-H overturning progresses monotoni-
cally from the top of the tank to the bottom of the tank (t < ~ 16 minutes). In Figure 21, this K-H
overturning is greatly influenced by the motion of the bottom floor. Note, for example, around
t = 15 minutes, which corresponds to a maximum excursion of the bottom floor, we only see tur-
bulence in the middle part of the tank, and no turbulence in the lower part of the tank. In con-
trast, Figure 8b shows a regular progression of the K-H turbulence at this time.

The evolution of the mean flow for this run, averaged over one beat period, is shown in
Figure 22. This mean flow evolution is similar to the one-wave case shown in Figure 9 in that a
velocity ledge progresses downward toward the floor during the time K-H overturning is ob-
served. Thereafter, the mean velocity is nearly constant with time. Note, however, that the mean
velocity in the lower part of the tank is smaller in this case than in the one-wave case. This
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Figure 22.
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Evolution of the mean velocity profile with time in Run 151 (a two-wave run with

Wave 1 having a phase speed of 4.5 cmy/sec and a peak-to-peak amplitude of 3.0
cm and Wave 2 having a phase speed of 3.5 cm/sec and a peak-to-peak amplitude
of 3.0 cm). Times are in minutes after the start of the bottom floor.
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lower mean velocity allows more wave energy to be transferred to the upper part of the tank in
this case, allowing more turbulence in the upper part of the tank at later times.

5. Summary and Comments

Gravity wave, critical wave interactions have been observed for both single-wave forcing
and two-wave forcing. In the two-wave case, three different conditions have been presented. For
both the single- and two-wave forcing, the initial overturning and turbulence appears to be Kel-
vin-Helmholtz in nature. This has been verified both with visual observations and with Richard-
son number contour plots. The mean velocity profiles exhibit a velocity ledge which moves
downward, away from the critical layer and toward the bottom floor of the tank, with time. Later
overturning appears to be a strong function of the bottom floor.

The importance of these results is the following:

a. These experiments are the first to quantify wavebreaking from gravity wave, critical
layer interactions. This quantification has resulted in our characterizing the overturn-
ing as due to Kelvin-Helmholtz instabilities rather than due to convective overturning.
K-H wavebreaking was speculated by us earlier (Delisi and Dunkerton, 1989), but
there was no previous quantitative data to substantiate that hypothesis.

b. This is the first laboratory experiment of which we are aware in which a stable mean
flow is perturbed by an internal gravity wave to create a flow which is unstable to
Kelvin-Helmholtz instabilities. The minimum Richardson number in the mean flow, at
depths where K-H instabilities are later observed, can be 20 or higher. When the
wave shear is added to this mean flow shear, the Richardson number falls below one-
quarter, allowing Kelvin-Helmholtz instabilities to develop.

c. These experiments have shown that gravity wave, critical layer interactions can be
studied in the laboratory and that quantitative measurements of those interactions can
be obtained. We believe the feasibility of future studies, involving compact wave
sources (which are relevant to atmospheric flows), has been shown and should be
pursued at a later date.
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Laboratory observations of gravity wave, critical layer
flows using single and double wave forcing

Donald P Delisi and Timothy J Dunkerton
Northwest Research Associates, PO Box 3027, Bellevue WA 98009-3027

Laboratory measurements of gravity wave, critical layer flows are presented. The measure-
ments are obtained in a salt-stratifiéd annular tank, with a vertical shear profile. Internal grav-
ity waves are generated at the floor of the tank and propagate vertically upward into the fluid.
At a depth where the phase speed of the wave equals the mean flow speed, defined as a critical
level, the waves break down, under the right forcing conditions, generating small scale turbu-
lence. Two cases are presented. In the first case, the wave forcing is a single, monochromatic
wave. In this case, the early wave breaking is characterized as Kelvin-Helmholtz breaking at
depths below the critical level. Later wave breaking is characterized by weak overturning in the
upper part of the tank and regular, internal mixing regions in the lower part of the tank. In the
second case, the wave forcing is two monochromatic waves, each propagating with a different
phase speed. In this case, the early wave breaking is again Kelvin-Helmholtz in nature, but
later wave breaking is characterized by sustained overturning in the upper part of the tank with
internal mixing regions in the lower part of the tank. Mean velocity profiles are obtained both

before and during the experiments.
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INTRODUCTION

Gravity waves occur naturally in the atmosphere and are
important in atmospheric circulation for transporting mo-
mentum and for generating turbulence, thereby producing
mixing. One mechanism for the breakdown of gravity
waves into turbulence occurs in a shear flow when the wave
approaches its critical level, which is defined as the level
where the horizontal phase speed of the wave equals the
mean flow speed (Booker and Bretherton, 1967). When this
occurs, the wave’s vertical propagation is modified, wave
energy is transferred to the mean flow, and turbulence can
be generated.

To predict atmospheric circulation, it is important to un-
derstand how gravity waves propagate and break down. Our
lack of understanding of the interactions between large-scale

part of “Mechanics USA 1994" edited by AS Kobayashi
Appl Mech Rev vol 47, no 6, part 2, June 1994

waves and small-scale turbulence and mixing is one of the
factors that limits our ability to predict atmospheric condi-
tions very far in advance.

The bulk of our present understanding of gravity wave,
critical level interactions has come from theoretical and
numerical studies (see e.g., Bretherton, 1966; Lindzen,
1981; Fritts, 1984; Maslowe, 1986; and Dunkerton and
Robins, 1992, to name a few). In addition, there have been
attempts at observational studies of this phenomenon (e.g.,
Merrill and Grant, 1979).

In the laboratory, studies of gravity wave, critical level
interactions under controlled conditions have been reported
by Bretherton et al., 1967; Thorpe, 1973; Koop, 1981; Koop
and McGee, 1986; and Delisi and Dunkerton, 1989. In
these experiments, the reported results have typically been
qualitative in nature, and most experiments were limited by
the physical dimensions of the test facility, which limited
the duration of the interactions.

EXPERIMENTAL FACILITY

The experimental facility used in these experiments is de-
scribed in detail in Delisi and Dunkerton (1989). Our facil-
ity is a modification of a laboratory wave tank developed by
Plumb and McEwan (1978). A schematic of the facility is
given in Figure 1. The tank is annular, with an outer di-
ameter of 1.8 m, an inner diameter of 1.2 m, and a depth
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Tank Side
Wall

TOP VIEW

FIG 1. Schematic drawing of the experimental facility.

of 40 cm. The bottom of the tank is a rubber sheet overlay-
ing individual acrylic sheets. The common boundaries of
each pair of acrylic sheets rest on top of a vertical piston
which is driven by a stepper motor. A computer controls
the movement of each stepper motor, driving each section of
the bottom floor of the tank vertically. In this way, we can
prescribe the motion of the bottom floor as a wave which
propagates around the bottom of the tank with a known
amplitude, wavelength, and phase speed. In this series of
experiments, the computer controlled the floor to move as
either a single, monochromatic wave or as two monochro-
matic waves, with different phase speeds. We used wave-
number two in all the experiments.

To perform an experiment, we fill the tank with a strati-
fied salt water solution, rotate a floating lid on the water
surface to create a vertical shear profile, then propagate one
or two waves on the bottom floor of the tank by moving the
floor vertically with the stepper motors. Measurements
consist of instantaneous density data from an oscillating
conductivity probe, bottom floor position data, mean and
instantaneous velocity profiles from streak photographs of
neutrally buoyant particles, and 35-mm and video pictures
of shadowgraph flow visualization which show the turbulent
regions.

The initial velocity profile before the two-wave run is
shown in Figure 2. This profile shows a nearly constant
velocity in the upper layer, where the lid has mixed the
fluid, and a nearly exponential velocity profile beneath the
mixed region.

We used two, linearly stratified density layers in these
experiments. The uppermost layer is a highly stratified re-
gion whose purpose is to minimize the depth of the mixed
layer generated by the rotating lid. The initial density pro-
file for the two-wave experiment is shown in Figure 3. The

y¢— Rubber Sheet

]! D

\ Acrylic Sheets

1l

Piston —>

D <— Stepper

— Motor

Belt

Computer
SIDE VIEW

One of 32 piston assemblies is shown in the side view

Brunt-Vaisala frequency, N, for the top layer is 1.62 sec’,
and N for the bottom layer is 1.02 sec”, where
N = (g/p dp/dz)'?, where g is the acceleration due to grav-
ity, p is density, and z is the vertical coordinate.

RESULTS

One wave results

In this experiment, we forced the bottom with a single wave
with a peak-to-peak amplitude of 4.0 cm and a phase speed
of 4.5 cm/sec. The movement of the bottom floor was not
exactly sinusoidal, but was asymmetric to match the propa-
gating wavefronts in a nonsheared, linearly stratified fluid.
This asymmetry in the forcing function is intended to mimic
the generated gravity wave and to, therefore, reduce the
higher harmonics that would be generated by using a sinu-
soidal wave on the bottom floor.
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FIG 2. The initial velocity profile before a two-wave experi-
ment.
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10 ' ‘ T ‘ We have analyzed these videotapes to determine the vertical

extent of the breaking regions as a function of time. Figure
oko ] 4 shows the observed regions of turbulence. vs time after the
start of the bottom floor. Note in Figure 4 that the overturn-

\ ing first appears near the top of the tank and progresses

- 2oy - downwards, toward the bottom floor, from t = 0 to t ~ 13
min. From observations of the videos, this overturning ap-
pears to be Kelvin-Helmholtz (K-H) in nature. For t > ~13
min, most of the observed turbulence occurs in mixing re-
gions in the bottom half of the tank (Delisi and Dunkerton,
1989), with only sporadic, patchy turbulence being observed
in the top half of the tank. The evolution of the mean ve-
locity profile is shown in Figure 5, and shows that the initial
-40 o mean velocity profile is modified by a velocity ledge which

0 100 20 30 40 50 60 progresses downwards with time. These mean flow modifi-

Sigma t = (Density - 1) * 1000 cations are qualitatively similar to those predicted by nu-

FIG 3. The initial density profile before a two-wave experi- Ecrical simulations ‘(Dunkt:,rton .and RObi?S’ 19.92) » al-
ment. Circles are observations taken during the filling of the ough tl:le overtummg. regions in. those simulations are
tank; squares are probe samples taken after filling the tank.  Characterized as convective overturning rather than K-H. In
Straight lines are drawn for comparison to linearity. our laboratory experiments, the initial K-H overturning is
observed during the time the ledge is a feature in the mean

Videotapes of shadowgraph visualization clearly show  flow; the mixing regions appear to occur when the velocity
regions of overturning and turbulence as a function of time.  in the lower part of the tank is more nearly constant.
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FIG 4. Observed regions of turbulence in a one-wave experiment. Time is minutes after the start of the experiment.
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FIG 5. Mean flow velocity profiles for a one-wave experiment.
The mean flow is the average over one wave cycle. Time is
minutes after the start of the experiment.

Two wave results

In this experiment, we forced the bottom with two waves.

Appl Mech Rev vol 47, no 6, part 2, June 1994

Each wave had a peak-to-peak amplitude of 3.0 cm. One
wave had a phase speed of 4.5 cm/sec, and the second wave
had a phase speed of. 3.5 cm/sec. With these choices, the
bottom forcing has a beat period of 4 minutes.

The overturning regions for this case are shown in Figure
6. For early time, t < ~ 13 min, the shadowgraph visualiza-
tions show that the breaking regions are K-H, as in the one-
wave case. Figure 6 also shows an early pattern of breaking
similar to the pattern shown for the one-wave case in that
the breaking regions occur initially high in the tank and
progress towards the floor of the tank with time. (The lack
of wave breaking before t ~ 5 min is probably attributable to
a ramping up of wave amplitude in this run vs the one-wave
case where the waves started at full amplitude at t = 0).

At t > ~13 min, the shadowgraph visualization shows a
significant difference between the one-wave and the two-
wave cases. In the one-wave case, the internal mixing re-
gion which occurs near the bottom of the tank appears once
every wave cycle. Only small, sporadic regions of turbu-
lence appear above these regions, at depths around 15 cm.
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FIG 6. Observed regions of turbulence in a two-wave experiment. Time is minutes after the start of the experiment.
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FIG 7. Mean flow velocity profiles for a two-wave experiment.
The mean flow is the average over one beat period. Time is
minutes after the start of the experiment.

In the two-wave case, around t ~ 13 min, the turbulent re-
gions appear to bifurcate, with K-H overturning appearing
at a depth around 17 cm and a mixing region, similar to that
in the one-wave case, appearing in the lower portion of the
tank. The K-H regions in the upper part of the tank appear
more or less periodically. This is in contrast to the turbulent
regions in the bottom of the tank, which appear in packets
of three. The time interval between these packets is due to
the beating of the two bottom waves, which, as in the one-
wave case, are asymmetric.

The evolution of the mean flow, averaged over one beat
period, for the two-wave case is shown in Figure 7. This
mean flow evolution is similar to the one-wave case in that a
velocity ledge progresses downward toward the floor during
the time K-H overturning is observed. Thereafter, the mean
velocity is nearly constant with time.
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SUMMARY

Gravity wave, critical layer observations for both single
wave forcing and two-wave forcing have been presented.
For both cases, the initial overturning appears to be Kelvin-
Helmbholtz in nature, and the mean velocity profiles exhibit
a velocity ledge which progresses downward toward the
floor with time. Later overturning appears quite different in
the two cases, with prolonged K-H overturning in the upper
regions of the tank in the two-wave case.
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